Current economics and sustainability of shrimp farming Lorenzo M. Juarez

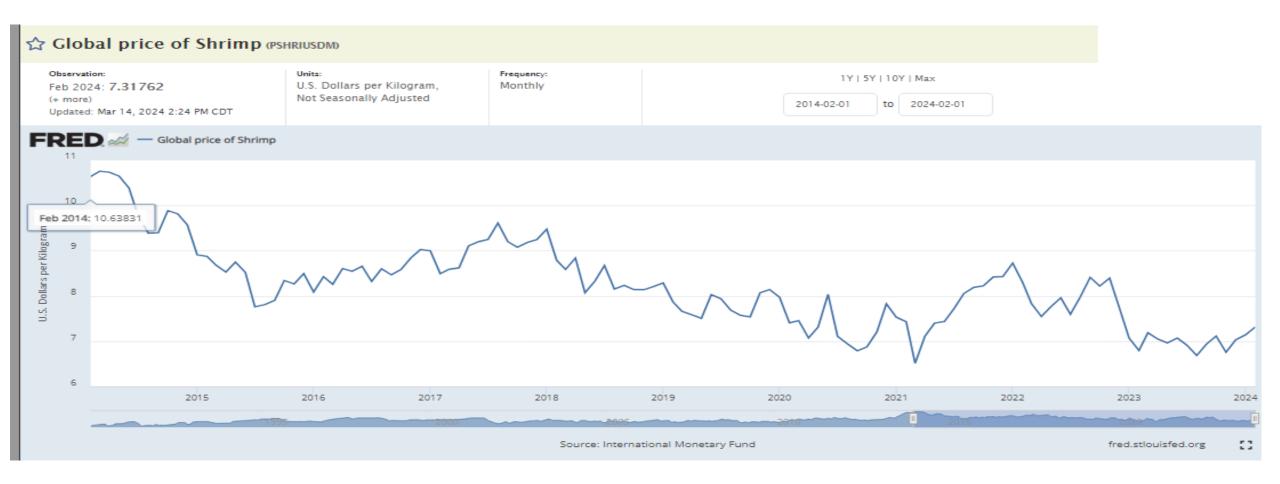
Coall

My topics today:

The current market
Producer's point of view
Sensitivity analysis (Ecuador production case)
Efficiency, intensification and sustainability

I. The current market

- In our lifetimes shrimp and salmon have gone from being luxury products to commodities, thanks to aquaculture.
- Market now characterized by oversupply, slow demand, and low prices.
- Complicated by inflation which causes high cost of inputs. Notably feed.
- Producers are struggling and industry consolidation is going on.
- Prices to the consumer have not decreased.



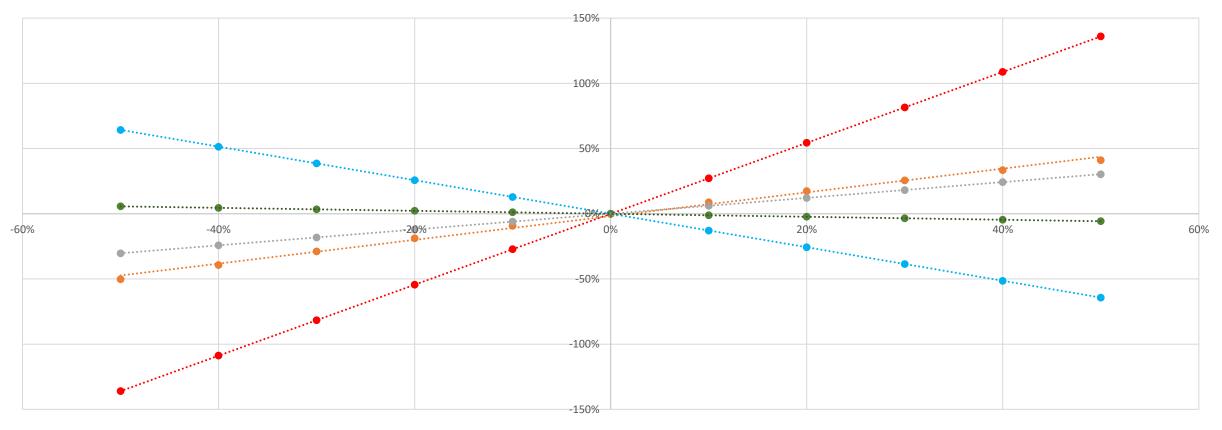
Source: Rabobank, FAO, Robins McIntash, CP Foods, GOAL Survey 2022

Note* Other Americas include Mexico, Honduras, Peru, Venezueia, Brazil, Guatemala, Nicaragua, Colombia, Costa Rica, Cuba, Panama, Note* Other Asia include Bangladesh, Myanmar, Brunei, Japan, South Korea, Taiwan, Philippines, Malaysia, Saudi Arabia and Iran

Shrimp index benchmark price USD/kg 2014-2024

Copyright © 2016, International Monetary Fund. Reprinted with permission. https://fred.stlouisfed.org/series/PSHRIUSDM, March 28, 2024.

II. Producer's point of view Five methods to survive the price crisis:


- 1. Boost consumption
- 2. Industry consolidation
- 3. Escape the commodity market
- 4. Become more economically efficient
- 5. Become more technically efficient

III. Sensitivity analysis. Generalized economic model for an efficient shrimp farm in Ecuador

CATEGORY	VARIABLES/RESULTS	BASE	UNITS	NOTES
Management	Stocking density	18	#/m2	Variable according to conditions from 15 to 20
	Juvenile weight at stocking	0.3	g	Variable according to nursery from 0.2 to 0.8
	Harvest weight	28	g	According to strategy. Constant in this model
	Time between cycles:	24	days	Variable according to tides and strategy
	Harvest density	0.35	kg/m2/crop	Variable depending on farm and cropping system
Biology	Growth	2	g/week	Variable according to genetics and conditions from 1.7 to 2.6
	ADG	0.29	g/day	Variable 0.20 to 0.40
	Grow-out survival	70	%	Variable according to conditions 50 to 90%
	Nursery survival	70	%	Variable from 60 to 80%
	FCR	1.6	g/g	Between 1.3 and 1.8
Infrastructure	Pond area	10,000	m2	Typical ponds are 7-12 hectares. Here everything per hectare
Financial	PLs Price	2.30	USD/1000	Range 1.80 to 2.40
	Feed price	1.20	\$/kg	Feed range from \$1000 to \$1300 \$/t
	Other variable costs \$	1,000	/cycle	
	Sale price, ex farm	4.00	\$/kg	Paid to producer pondside
Results	Days to harvest	97	days	Varies according to conditions and market 50 to 120
	Cycles per year	3	cycles/year	
	Juveniles stocked	180	in 1000/cycle	
	Stocked biomass	54	kg/cycle	
	Harvested biomass	3,528	kg/cycle	
	Annual production	10,647	kg/year	
	Productivity	11	MT/ha/year	
	Annual use of juveniles	543	in 1000/year	
	Annual use of PLs	776	in 1000/year	
	Annual feed use	16,774	kg/year	
Costs	PLs	1,785	/year	
	Feed	20,129	\$/year	
	Other variable costs	3,018	-	
	Fixed costs		/year	
	Cost of production	\$2.53		\$2.50 to \$2.70 on efficient farms
Revenue	Sales	\$42,587		
	Profit	\$15,655	-	


Changes in Profit vs. Changes in Price, Growth, Survival, FCR and Price of PLs (% vs. %)

• Price • Growth • Survival • FCR • Price of PLs ……… Lineal (Price) ……… Lineal (Growth) ……… Lineal (Survival) ……… Lineal (FCR) ……… Lineal (Price of PLs)

Change (%)	-50%	-40%	-30%	-20%	-10%	0%	10%	20%	30%	40%	50%	Rank
Price	-136%	-109%	-82%	-54%	-27%	0%	27%	54%	82%	109%	136%	1
FCR	64%	51%	39%	26%	13%	0%	-13%	-26%	-39%	-51%	-64%	2
Growth	-50%	-39%	-29%	-19%	-9%	0%	9%	17%	26%	33%	41%	3
Survival	-30%	-24%	-18%	-12%	-6%	0%	6%	12%	18%	24%	30%	4
Price of PLs	6%	5%	3%	2%	1%	0%	-1%	-2%	-3%	-5%	-6%	5

IV. Efficiency, intensification and sustainability

EFFICIENCY IS ABOUT DOING MORE WITH LESS SUSTAINABILITY IS AN OVERUSED TERM THAT HAS ALMOST LOST ITS MEANING

Efficiencies of Different Animals

Feed and freshwater required to produce 1 Kg edible meat

8 kg feed 7,028 liters

3 kg feed 2,861 liters

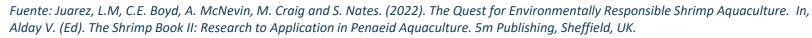
2 kg feed 1,175 liters

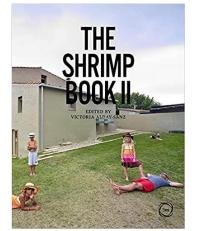
1.5 kg feed 1,600 liters

1.5 kg feed 121 liters

0 kg feed 0 liters

Shrimp farming is an efficient form of animal protein production


Sources:


http://www.nmfs.noaa.gov/aquaculture/faqs/faq_aq_101.html http://www.salmonfacts.org/feedc.html

https://www.moore.org/docs/default-source/environmental-conservation

Average use of resources per metric ton of Shrimp produced in five countries and a in a hyperintensive farm in USA

Metric	Ecuador	India	Vietnam	Thailand	Indonesia	Hiper- intensive farm in USA
Stocking density (PLs/m ²)	22.5	38.3	57.3	76.5	92.5	150+
Survival (%)	»60	75.8	73.9	70.8	72.5	85
Crops/year	3.6	1.97	1.87	2.25	2.5	3.9
Crop duration (days)	91	115	90	90	100	84
Aeration rate (hp/ha)	9	18	24	43	?	110
Production (t/ha /year)	7.03	7.85	9.3	17.7	22.7	199
FCR	1.32	1.48	1.33	1.49	1.4	1.3
Water exchange (m ³ /t)	76,817	126,498	15,100		33,475	1,145
Land use (ha/t)	0.19	0.152	0.196	0.12	0.077	0.020
Direct energy use (GJ/t)	24.4	62.1	37.1	38.8	42.8	37.2
Use of fish in feed (t/t)	0.89	0.66	0.63	0.67	0.61	1.69

Intensification

Adding resources to increase productivity

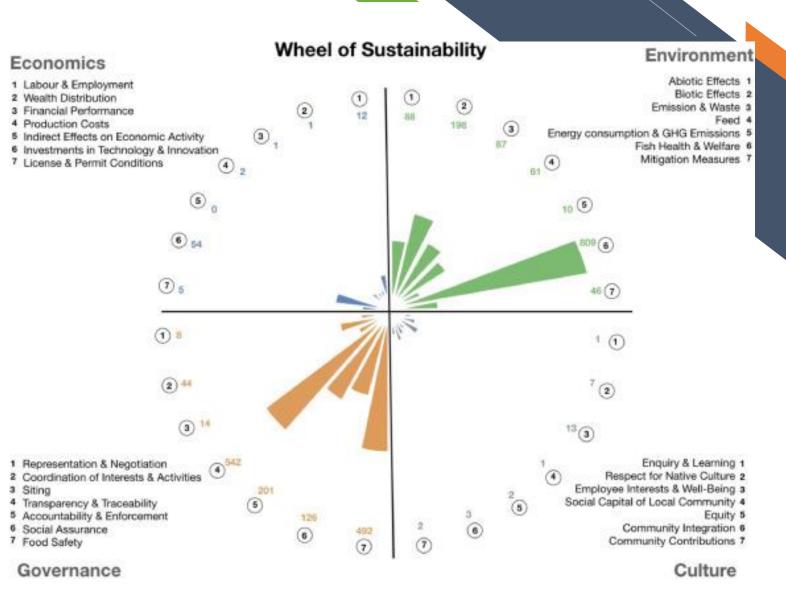
Traditional ranges of aquaculture intensity

RANGES	FEEDING	AREATION	PRODUCTION (kg/ha/Year)
Hiper-intensive	Complete hi-tech feed (+ floc)	>40 HP/Ha	>10,000
Super-intensive	Complete feed	30 HP/Ha	5,000 - 10,000
Intensive	Good feed	20 HP/Ha	3,500-5,000
Semi-intensive	Inexpensive feed	Emergency	1,000 - 3,500
Extensive	Fertilization	No	200 - 1,000
Natural	No	No	50-200

Global pond area and Shrimp production¹

		AR	EA	PRODUCTION		
kg/ha/y	PRODUCTIVITY	Million ha	Percent	Million t	Percent	
>300	Medium and high	1.4	58%	5.2	95%	
<300	Low (extensive)	1.0	42%	0.3	5%	
Totals		2.4	100%	5.5	100%	

¹ Fuente: Boyd, C.E. and McNevin, A.A. (2018) Land use in shrimp aquaculture. World Aquaculture 49(1), 28-34.


Sustainability

Approach	Meaning
Public domain	Persistence over time while maintaining a healthy environment
United Nations Development Program	Development that meets the needs of the present without sacrificing those of future generations
Economics	Total capital remains constant over time within a bounded system. It includes human, natural and economic capital
Sociology	Promotes the well-being of an organization's members and community
Ecology	Promotes the diversity, adaptability, resilience, and biological productivity of ecosystems
Law	Acceptable practices and procedures under applicable environmental laws
Business	The company remains profitable and its performance is predictable over time
Practical approach	Choose the best available alternatives in terms of practices, procedures, and methods. Codes of ethics.
Resource Efficiency	Use of practices to maximize efficiency in the use of specific resources. Quantitative approach

Sustainability

Source: Osmundsen, Tonje C, et al. "The Operationalisation of Sustainability: Sustainable Aquaculture Production As Defined by Certification Schemes." Global environmental change, v. 60

Some producing countries of interest

INDICATORS	THAILAND	INDIA	ECUADOR	MEXICO
Production 2019 (t)	450,000	790,000	690,000	170,073
Production 2023 (t)	450,000	850,000	1,363,000	227,060
Crops per year	2.3	2.0	3.0	2.3
t/Ha/yr average	17.7	7.9	9.0	2.0
Pond Stocking densities #/m2	60-80	20-40	15-25	20.0
Pond sizes (Ha)	0.25 to 4	1 to 10	7 to 12	2 to 10
Stocks used	SPF	SPF, SPT	SPT	SPT
Use of nurseries	High	Low	High	Low
Improved nutrition	High	Medium	High	Medium
Use of demand feeders	High	Low	High	Low
Aeration HP/Ha	43	18	9	0
Biosecurity	High	Low	Low	Medium
Impact of genetics	High	Medium	High	Medium

Environmental effects	Environmental advantages of intensive systems
Loss of habitat Mangroves and other sensitive habitats, terrestrial ecosystems	Use of land reduced; more shrimp in less footprint
Ocean discharges in concentrated points: Suspended solids and particulate organic matter Soil erosion. Uneaten feed, chemicals, drugs	Discharges much reduced
Inefficient use of resources such as land, water, feeds	Reduced use of land and water Improved feed conversion, especially under biofloc conditions
Escapes: genetic effects, translocation or shrimp species or diseases	No escapes, higher biosecurity

In summary:

- Global oversupply of commodity shrimp has resulted in low prices.
- Complicated by higher costs, especially of feed.
- Crisis is accelerating industry consolidation.
 - Price, cost of feed, FCR, and ADG are the main profit drivers.
 - Possible solutions involve:

Boosting consumption or reducing supply Industry consolidation Find niche markets Improving technical and economic efficiencies; also helps with sustainability

Global trend towards intensification, but the most intensive systems are not yet competitive

Thanks a Lot! ¡Muchas Gracias!

Lorenzo M. Juárez

Contraction of the